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Community mining algorithm

Network communities refer to groups of vertices within which the connecting links are

dense but between which they are sparse. A community mining algorithm aims at finding

all the communities from a given network. Distinct from the exiting studies in the literature,

our former developed community mining algorithm described in [1] explored the notion of

network communities and their properties based on the dynamics of a stochastic model

naturally introduced. The relationship between the hierarchical community structure of a

network and the local mixing properties of the stochastic model was established with the

large-deviation theory.

Let (V,E) denote a network, where V = {1, 2, · · · , n} is a set of n vertices and E is

a set of links. In this study, a vertex in the network corresponds to a brain region, and a
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link between two vertices corresponds to the functional connectivity. Consider a stochastic

process defined on the network, in which an agent freely walks from one vertex to one of its

randomly selected neighbors along the links between them. Let X = {Xt, t ≥ 0} denote

the positions of the agent, and P(Xt = i, 1 ≤ i ≤ n) be the probability that the agent hits

the vertex i after t steps. Since the next state of the agent only depends on its previous state,

it follows that, for any it ∈ V ,

P(Xt = it|X0 = i0, X1 = i1, · · · , Xt−1 = it−1) = P(Xt = it|Xt−1 = it−1). (1)

Therefore, this stochastic process is a discrete Markov chain. Furthermore, it is also homo-

geneous since its transition probability from vertex i to vertex j satisfies:

P(Xt = j|Xt−1 = i) = pij, (2)

where pij is a constant does not depend on t. In terms of the adjacent matrix of the network

A = (aij)n×n, pij is defined by:

pij =
aij∑
j aij

, (3)

or in matrix notation

P = D−1A, (4)

where P = (pij)n×n is the transition probability matrix, D = diag{d1, d2, · · · , dn}, and

di =
∑

j aij .

Now, let’s consider the dynamics of the above stochastic model defined on the network.

Intuitively, for a network with a community structure, its corresponding Markov chain will

stick to some local mixing states or metastable states before reaches the global mixing state.

The topological information related to network communities can thus be inferred from the
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hitting and exiting times of the local mixing states. More specifically, for a well-formed

community structure, each community is cohesive and easy to be locally mixed, corre-

sponding to an early hitting time. On the other hand, few inter-community links lead to a

late exiting time, or equivalently a long global mixing time. Let s1 denote the global mix-

ing state and sn, · · · , s2, s1 be a sequence of local mixing states reaching to global mixing

state. Let T ext
s , 1 ≤ s ≤ n be the exiting time of the s-th local mixing state. Following the

main result of Large-deviation theory developed by Varadhan, Freidlin and Wenzel [2], all

local exiting times can be estimated by the spectrum of the Markov generator Q = I −P ,

where I is the identity matrix. Specifically,

T ext
s ≈ 1/λs, s = 1, · · · , n, (5)

where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the n non-negative real-valued eigenvalues of the

generator Q. The hitting time of the s-th local mixing state can be reasonably estimated by

the exiting time of the (s+ 1)-th local mixing state, that is

T hit
s = T ext

s+1 ≈ 1/λs+1. (6)

Therefore, any community structure of the network can be captured by the spectral proper-

ties of the Markov generator Q. For a well-formed K-community structure, the cohesion

of each community indicates the quantity

CK = T hit
K ≈ 1/λK+1 (7)

is small, while a good separability of the community structure leads to the measure

SK = T ext
K − T hit

K ≈ 1/λK − 1/λK+1 (8)
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to be large. Hence, the sequence

CQk =
Ck

Ck + Sk

=
λk
λk+1

, 1 ≤ k ≤ n− 1, (9)

can be defined as the spectral signature of a network. It is clear that 0 ≤ CQk ≤ 1. A small

CQK implies a better K-community structure with better cohesion as well as separability.

The number of well-formed communities can be inferred from

K = argminkCQk. (10)

From the above analysis, the connection between the community structure of a network

and the spectrum of its corresponding Markov generator has been uncovered. Many ques-

tions related to the characterizing the community structure of a network can be converted to

observing and inferring from its spectral signature. See [1] for a more complete discussion.

Many different strategies can be used to implement the mining of the K-community

structure if some CQK is lower than a threshold. We follow the efficient implementation

proposed in [1]. This algorithm does not require calculating the eigenvalues/eigenvectors

and multiplying the transition matrix, which is thus suitable for very large-scale networks.

More detailed implementation of the scalable algorithm is described in [1].
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Table S1: Treatment details of RMDD patients.

Treatment Number of case

venlafaxine 6

citalopram 3

paroxetine hydrochloride 2

fluoxetine hydrochloride 1

mirtazapine 2

amitriptyline 2

amitriptyline hydrochloride + sodium valproate 1

amitriptyline + risperidone 1

paroxetine hydrochloride + quetiapine 1

venlafaxine + lithium carbonate 1

Imipramine hydrochloride + sodium valproate 1

Unavailable 3

All FEMDD patients were treatment naı̈ve. None of the RMDD patients receiving

combination treatments had schizoaffective disorder or co-morbidity with any Axis II dis-

orders. Combination treatments were being used due to their claimed efficacy for treatment

resistant depression [3–5].
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Table S2: Grey/white matter volumes of the ROIs involved in “hate circuit” for both

patients (p) and normal controls (n).
INS.L PUT.L SFGdor.L

Sum of white matter (p / n / p-value) 2465.6 / 2514.2 / 0.4707 2128.3 / 2279.3 / 0.0951 3932.0 / 4041.9 / 0.6046

Mean of white matter (p / n / p-value) 0.5717 / 0.5697 / 0.7680 0.6057 / 0.6089 / 0.6973 0.2682 / 0.2678 / 0.9854

Sum of grey matter (p / n / p-value) 7475.9 / 7394.4 / 0.4573 3206.2 / 3037.2 / 0.0886 8748.7 / 8605.1 / 0.6756

Mean of grey matter (p / n / p-value) 0.6241 / 0.6196 / 0.4964 0.6255 / 0.6136 / 0.1252 0.4452 / 0.4478 / 0.8334

INS.R PUT.R SFGdor.R

Sum of white matter (p / n / p-values) 1905.4 / 1909.2 / 0.9464 2673.4 / 2801.3 / 0.2211 4996.5 / 5198.1 / 0.4594

Mean of white matter (p / n / p-value) 0.5549 / 0.5463 / 0.2810 0.6130 / 0.6101 / 0.6852 0.3083 / 0.3063 / 0.9148

Sum of grey matter (p / n / p-value) 7265.7 / 7247.1 / 0.8556 2974.6 / 2845.5 / 0.2005 9956.9 / 9803.9 / 0.6811

Mean of grey matter (p / n / p-value) 0.6129 / 0.6095 / 0.6259 0.5960 / 0.5869 / 0.2000 0.4614 / 0.4642 / 0.8074

Table S3: Grey/white matter volumes of the ROIs involved in risk/action circuit for

both patients (p) and normal controls (n).
IPL.L PreCG.L IFGoperc.L

Sum of white matter (p / n / p-value) 1593.2 / 1747.6 / 0.3187 4900.5 / 5236.1 / 0.1490 1389.4 / 1462.6 / 0.3248

Mean of white matter (p / n / p-value) 0.2510 / 0.2576 / 0.6276 0.2889 / 0.2868 / 0.8579 0.2996 / 0.3005 / 0.9156

Sum of grey matter (p / n / p-value) 9155.2 / 9090.3 / 0.7603 9343.1 / 9326.7 / 0.9470 3208.0 / 3149.9 / 0.4031

Mean of grey matter (p / n / p-value) 0.5382 / 0.5366 / 0.8743 0.4399 / 0.4323 / 0.4295 0.4744 / 0.4667 / 0.3213

Table S4: Grey/white matter volumes of the ROIs involved in emotion/reward circuit

for both patients (p) and normal controls (n).
ORBsup.L ORBsupmed.L ORBsup.R ORBsupmed.R

Sum of white matter (p / n / p-value) 1106.2 / 1184.4 / 0.2500 273.4 / 309.5 / 0.2314 1196.0 / 1248.7 / 0.4511 499.6 / 542.6 / 0.2489

Mean of white matter (p / n / p-value) 0.3035 / 0.3171 / 0.0992 0.2120 / 0.2263 / 0.4281 0.2882 / 0.3048 / 0.0615 0.2944 / 0.3133 / 0.2541

Sum of grey matter (p / n / p-value) 3391.4 / 3331.8 / 0.2850 2909.4 / 2870.3 / 0.4785 3312.9 / 3246.9 / 0.2729 3484.9 / 3421.8 / 0.2735

Mean of grey matter (p / n / p-value) 0.5128 / 0.5120 / 0.9194 0.5663 / 0.5657 / 0.9531 0.4973 / 0.4990 / 0.8201 0.5748 / 0.5762 / 0.8850
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